

Converting b/w units of length:-

$$1\text{Km} = 1000\text{m} = 10 \text{ hectometres (hm)} = 1000\text{m}$$

$$1\text{m} = 100\text{cm} \Rightarrow 1 \text{ Hectometre (hm)} = 10 \text{ Deca-}$$

$$1\text{cm} = 10\text{mm} \quad \text{metres (dm)}$$

$$3\text{Km} = 3000\text{m}$$

$$2\text{m} = 200\text{cm}$$

$$4\text{cm} = 40\text{mm}$$

$$6\text{Km} = 6000\text{m}$$

$$0.5\text{m} = 50\text{cm}$$

$$40\text{cm} = 400\text{mm}$$

$$5000\text{m} = 5\text{Km}$$

$$400\text{cm} = 4\text{m}$$

$$80\text{mm} = 8\text{cm}$$

$$2.5\text{Km} = 2500\text{m}$$

$$1\text{m} = 100\text{cm}$$

$$9000\text{mm} = 9\text{m}$$

$$0.8\text{m} = 80\text{cm}$$

$$90\text{cm} = 0.9\text{m}$$

$$1.5\text{cm} = 15\text{mm}$$

$$1\text{dm} = 10\text{metres}$$

$$1\text{m} = 10 \text{ decimetres (dm)}$$
$$= 100\text{cm}$$
$$= 1000\text{mm}.$$

$$1\text{dm} = 10\text{cm}$$

$$1\text{dm} = 0.1\text{m}$$

$$1\text{cm} = 10\text{mm}$$

$$1\text{cm} = 0.01\text{m}$$

$$1\text{mm} = 0.001\text{m}.$$

$$1\text{hr} = 60\text{min}$$

$$1\text{min} = 60\text{sec}$$

$$1\text{year} = 12\text{months}$$

$$1\text{months} = 30\text{days}$$

$$1\text{week} = 7\text{days.}$$

Q 1-

Find area & perimeter of a square whose side is 5cm.

Sol:- Side = $a = 5\text{cm}$.

Area of a square = a^2 square units cm^2

Area of a square = 5^2

$$A = 25\text{cm}^2$$

The Perimeter of a square = $4a$ units

$$P = 4 \times 5 = 20.$$

Therefore, the perimeter of a square = 20cm .

2- What is the circumference of a circle with a radius of 3.5cm ?

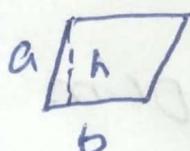
Sol Radius of the circle = $r = 3.5\text{cm}$.

We know that:

Circumference of a circle with radius $r = 2\pi r$
 $= 2 \times \left(\frac{22}{7}\right) \times 3.5$

Hence the circumference is 22cm .

Formulas -

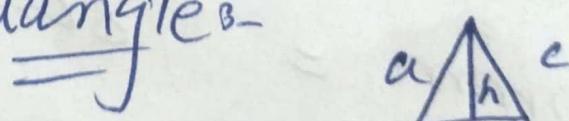

Rectangle

Area = length \times width

$$A = l \times w$$

Perimeter = $2 \times$ length +
 $2 \times$ widths.
 $= 2l + 2w$.

Parallelogram


Area = Base \times Height

$$A = b \times h$$

Perimeter = Add the length
of all sides.

$$P = 2a + 2b$$

Triangle

Area = $\frac{1}{2}$ of the base \times
 $\frac{1}{2}$ height
 $= \frac{1}{2}bh$

$$8 \times 10 = 80 \text{ sq. ft.}$$

$$P = 2W + 2L$$

$$P = 2(8) + 2(10)$$

$$P = 16 + 20$$

$$P = 36 \text{ ft.}$$

Second Solution.

Rectangle for Second Solution

Rectangle for Second Solution

Understand the problem:

Find the length L.

W x L = 80 sq. ft.

Find the perimeter P.

② Circle:- ~~Area~~ $\text{Area} = \pi r^2$.

Radius: The distance from the center to a point on the circle (r).

Diameter: The distance b/w 2-points on the circle through the center $d = 2r$

Circumference: the distance around the circle: $\pi d = 2\pi r = \text{Perimeter}$.

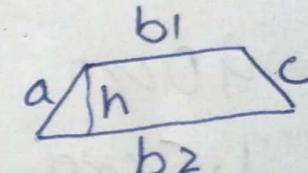
$$8 \times 10 = 80 \text{ sq. ft.}$$

$$P = 2W + 2L$$

$$P = 2(8) + 2(10)$$

$$P = 16 + 20$$

$$P = 36 \text{ ft.}$$


Triangle:-

Area = $\frac{1}{2}$ of the base x height
 $= \frac{1}{2}bh$

Perimeter = Add the length of the three sides.

Trapezoid:-

Area = $\frac{1}{2}$ of the base x height.

$$A = \left(\frac{b_1 + b_2}{2} \right) h.$$

Perimeter:- Add length of all sides

$$P = a + b_1 + b_2 + c.$$

→ if the radius of a circle is 21cm. Find its area and circumference -

Sol : radius = 21cm

$$\text{Area} = \pi r^2$$

$$A = \frac{22}{7} \times (21)^2$$

$$A = 1386 \text{ sq.cm}$$

$$\text{Circumference} \Rightarrow C = 2\pi r = 2 \times \frac{22}{7} \times 21$$

→ If the length of the side of a square is 11cm. Then find its area & also find the total length of its boundary.

$$\text{Area} = a^2 = (11)^2 = 121 \text{ sq.cm.}$$

Total length of its boundary,

$$\text{Perimeter} = 4a = 4 \times 11 = 44 \text{ cm}^2$$

→ Find area & perimeter of rectangular
 $L = 12\text{m}$, width = 10m .

→ Diagonal of Rectangle = $\sqrt{l^2 + b^2}$.

A number that can be represented in the form of p/q is called a rational number. For example, $1/2$, $4/5$, $26/8$, etc.

Irrational Numbers

A number is called an irrational number if it can't be represented in the form of a ratio.

Example: $\sqrt{3}$, $\sqrt{5}$, $\sqrt{11}$, etc.

Real Numbers

The collection of all rational and irrational numbers is called real numbers. Real numbers are denoted by R .

Every real number is a unique point on the number line, and every point on the line represents a unique real number.

Difference between Terminating and Recurring Decimals

Terminating Decimals	Repeating Decimals
If the decimal expression of a/b terminates. i.e. comes to an end, then the decimal so obtained is called a Terminating decimals.	A decimal in which a digit or a set of digits repeat repeatedly periodically is called a repeating decimal.
Example: $\frac{1}{4} = 0.25$	Example: $\frac{2}{3} = 0.666\dots$

Some Special Characteristics of Rational Numbers

- Every Rational number is expressible as a terminating decimal or a repeating decimal.
- Every terminating decimal is a rational number.
- Every repeating decimal is a rational number.

Irrational Numbers

- The non-terminating, non-repeating decimals are irrational numbers.

Example: $0.0100100001001\dots$

- Similarly, if m is a positive number which is not a perfect square, then \sqrt{m} is irrational.

Example: $\sqrt{3}$

- If m is a positive integer which is not a perfect cube, then $\sqrt[3]{m}$ is irrational.

Example: $\sqrt[3]{2}$

Properties of Irrational Numbers

- These satisfy the commutative, associative, and distributive laws for addition and multiplication.
- The sum of two irrationals need not be irrational.

Example: $(2 + \sqrt{3}) + (4 - \sqrt{3}) = 6$

- The difference between two irrationals need not be irrational.

Example: $(5 + \sqrt{2}) - (3 + \sqrt{2}) = 2$

- The product of two irrationals need not be irrational.

Example: $\sqrt{3} \times \sqrt{3} = 3$

- The quotient of two irrationals need not be irrational.

$2\sqrt{3}/\sqrt{3} = 2$

- Sum of rational and irrational is irrational.
- The difference between rational and irrational numbers is irrational.
- The product of rational and irrational is irrational.
- Quotient of rational and irrational is irrational.

Real Numbers

A number whose square is non-negative is called a real number.

- Real numbers follow Closure property, associative law, commutative law, the existence of an additive identity, existence of additive inverse for Addition.
- Real numbers follow Closure property, associative law, commutative law, the existence of a multiplicative identity, the existence of multiplicative inverse, and Distributive laws of multiplication over Addition for Multiplication.

Rationalization